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1. Introduction

Error-tree direct methods for the inversion of numerical

and polynomial matrices are available in the literature [11

[2]. In this paper we describe a parallel error-free high-

order convercent matrix inversion method for matrices over

integers, based on the Newton-Schultz iterative scheme [3]

[4] and the p-adic approximation [5-9]. Some of the impor-

tant aspects of this scheme are:

(i) Inversion of matrices over p-adic fields, analogously

to inverting or reciprocating the numbers, without

any convergence problem.

(ii) The exact and simultaneous determination of the

rational elements of the inverse matrix in p-adic

digit parallel fashion with a quadratic or higher rate.

(iii) Easy realization of the scheme and its variants (higher-

order convergent extensions) by parallel matrix multi-

plications.

This paper is organized in seven sections. In the second

section we outline the principle of the Newton-Schultz scheme

for reciprocating numbers. The third section describes the

reformulation of the Newton-Schultz scheme in an algebraic

setting to compute the p-adic approximant to the inverse of a

matrix over the ring of integers. In the fourth section we

describe the extended EuclideFan algorithm that converts a

given p-adic approximant over a range of rationals into an

equivalent rational. The fifth section contains an example.

imp 0



In Section 6 we briefly deal with the solution of a linear

system of equations, having a linear convergence rate.

Several remarks pertaining to possible extensions and gen-

eralizations are provided in the last section.

'I



2. The principle

Let f(x) be a real function of the real variaole x and

x=cx be a root of f(x)=O. We assume that:

(a) f(x), f'(x) and f"(x) are continuous in a neighbor-

hood la,b] of x=; (b) x=t is an isolated root in

[a,b]; (c) f'(x) and f"(x) do not vanish in [a,b].

The seirch for the root x=, entails finding the root

of the equation

f'(x) (x)

Since >' (,=0 there exists a neighborhood of x=C( such that

the sequence {x. I defined by
i 0

xn = xn-l - f(x n l)/f'C nx I  (n=1,2.... (i)

converges to x=(i if the first aporoximation x=x 0 lies in this

neighborhood. Applied to the function f(x)=l/x-a (1) gives

the Newton-Schultz scheme

Xn= x nC(2-ax n-) (2)
-I

The sequence (2) converges to a rhe matrix inversion algori-

thm to be described in the next section is by analogy based on

the sequence of iterates defined by (2) [31 (4].
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3. The Newton-Schultz method

Let A=[aij ] be a matrix over the ring of intecers Z and

r a prime such that det A mod pO0. (The reason for this will

become clear later.) The algorithm first constructs A- I mod p

and using this in tne Newton-Schultz recurrence olbtains a segment-

ed p-adic representation of the inverse matrix 15-9].

Theorem_ : There exists a matrix sequence B 2i} i> such that
22ii

"rnj mod p = I for all i>O, where A is the matrix to be inverted

and I is the identity matrix; 2 i is the inverse of A(in Z) mod

p (or B 2i is the p-adic approximant of A- ).

Proof: We show the sequence {B 2ii>0 can be generated recur-

sivzly and then prove by induction that it has the property

stated, naritely, AB.i mod p = I. The first member of the sequence

i 1 is obtained in a priming step by solving

AB1 mod p = I

by 7aussian elimination or some other method. It amounts Lo

ciic~inq the inverse of A in Z mod p. Then in a powering step

'..c use the recurrence relation

B i = B i-1 (21 - AB i-I) mod p (il) (3)

to construct the successive iterates.
To see that the theorem holds let AB2i mod p = I be true

.:or i = n-l(n>l);then, by (3)
2n  2 n

(AB2n) mod p = AB 2n-1(21 - AB 2n-1) mod p

... .- .--.. ...... ... . .. , 1'-



n-].

Since AB2n-1 mod p = I by the induction hypothesis, we have
2n-i

AB 2n- 1 = I + P E n I ,

where E is the error matrix. Thus we can write

22o n
=( 2n- 2n-i 2

AB 2n n- En _ ) (I - p En1 ) mod p

Since by construction the theorem holds for n=O, it is true for

all n>0 by induction.

Our algorithm first obtains B2k by iterating k times, where

k is the minimum integer satisfying the inequality

n n 2

p - > ( . ) (4)
2 i=l j=l ii

This inequality ensures that the largest element of the inverse

matrix lies within the range of the segmented p-adic representa-

tion of the corresponding rational [5] [8].

Let N denote a positive integer satisfying the inequality

N -< (5)2

We define a finite subset F N of the rational numbers Q as the set

F = {C O<Ic<N and 0<dj<N}
N d' c

We call the set FN the order N Farey fractions, or simply Farey

rationals of order N.

If p and k are properly chosen to satisfy (4) then the

rationals FN which are mapped onto their segmented p-adic

representations in B2k can be uniquely recovered using an algori-

thm which is based on the extended Euclidean algorithm for finding

the greatest comnon divisor of two integers [10] [111].
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Let a/b and w be the ij-th entry of A-1 and B2k respectively.

Then

ab- mod p = W (6)

since b-1 exists mod p , due to the fact that det A mod pO.

In the following section we describe how to recover a/b

given w, provided (4) is satisfied. This algorithm filters out

a very small subset of rationals among which the desired rational

belonging to FN occurs. We will call the function that computes

a/b given w,the EUCLID; thus EUCLID(w)=a/b.

Remark

The number k determined from (4) is generally larger than

desired; so to iterate k times encails much superfluous computa-

tion. A practical method of avoiding this would be to compute

EUCLID (B2k) and EUCLID(B2k+l) starting with some reasonable k

and stop as soon as they are equal. This would unambiguously

determine the inverse.



4. Computation of Farey rationals using the Euclidean algorith!,

The Euclidean algorithm [111 constructs three pairs of rm-

bers (ui,u!), (ai,bi), (ti,t!) for each i=0,1,2,...,k starting

with u0P-,U6'=0, a0 =wb 0=l and ending when t.=0, az illustrated

in Table 1; here the symbol [ ] denotes the lower integral part

Note that the qi's here correspond to the continued fraction

excpansion [5] [12] of pr/W.

It can easily be shown that the pairs (ai1bi ) in Table

satisfy the following conditions 110] [111]

Cross-product rule:

ai*bi I +a b. = pr < 2N2+1i'b i+il +ai+l 1

Monotonicity:

<ai+ll < Jail, with a.=w,ak=l (8)

bi+l - Jbil with bo0l,bk=w- mod p r (9)

where w is such that gcd(w,p r)=l and w- denotes the multipli-

r
cative inverse of iw mod p

It is now necessary to show that (i) there exists a pair

(aj,bj) in Tablu 1 which satisfies the condition of a Farey

rational F 'Section 3), and (ii), such a pair is unique in the senseN '

that there exists no other pair belonging to FN -

To prove this, we use the fact that ai (starting with ao=w)

successively decreases to 1; and bi (starting with bo=l) succes-

sively increases to w when gcd(w,p r ) = 1.

Let us assume that for some j, b. has already increased from

1 to JN'J with JN'J < INJ and is close to INI, and the correspond-

ing aj has already decreased from w to IN"! where IN"I > INI and

- - . .. --- " -*---: l, z - _ . '% .'- 1 ,'4,,,l



is close to INI. Then using (7) we can prove that the succeed-

inq pair (a j+, bj+ I ) will have to be in FN or in other words

a pair of the form (aj+ I, b9+ I ) with aj+1 I < N and lbj+l ,

which skips a Farey rational belonging to FN cannot exist.

For if jail > N+l and Ibjj < N and laj+ 1 1 < N an6 lb,+ 1

N+l, we have a < N Using this in (7) we obtain

!aj'bj l> N 2+1. But we have jajI > N+l. Therefore !bj~lI <

(N2 +)/(N+l) = [NJ. Hence our assumption jbj+l1 > N is false.

We will now show that there is only one such rational be-

longing to FN. In other words, we will show that if for some j,

(a./b.) belongs to FN then (aj+i/b j+) cannot be in FN* Note that

the cross-product is maximum when

jail = N, IbjI = N - 1

laj+ 1 1 = N-l, lbj+ 1 1 = N.

In such a case

la'bj+ll + lbjaj+iI = (N-1) 2 + N 2 < 2N 2 + 1

would still be short of satisfying (7). Notice that for any

other choice of aj, bi, aj+ 1 , b the condition (7) would beJ j+l

more severely violated. Also when jajI = lbj = N, it is not

possible for laj+ 11 = N, since aj+ 1 would become zero by the

algorithm in Table 1.

Thus a p-adic approximant (Hensel Code [5]) with the weight

w corresponds to the rational aj/b belonging to F N and the

conversion is complete.

Remarks

(i) The class of rationals generated by the above algorithm

may ccntain a rational (in non-reduced form) whose reduced

iI III. ..



form is in FN; but this is an invalid choice. (Se

example.)

(ii) If gcd(w, pr );l, the factor is taken out and the result

adjusted suitably.

Example

Let p=5, r=4, and w=448. Hence N<17. We now show in

Table 2 the computations corresponding to Table 1 of the algo-

rithm. The Farey rational is 11/7 (and not 5/60).

- ,1I



5. Matrix-inversion example

Let A = 3 2

01 -1

Let p = 3:

2 2

0 20]
B 0 1 21 (mod 3)

0 22

8

1 0 2

B 8 4920 4921 1640 (mod 3 =6561)

2460 5741 4100]

10 1i
80 (o 31643671

B 1 6  32285040 322C5041 10761680 (mod 3 =43C46721)

16142520 37665881 26904200

* i -----



We find that

1 0 1]

EUCLID(B1 6) = 3/4 1/4 - 1/4 = EUCL1D(B 8 )=A -

3/8 1/8 - 5/8J

Note that the inverse matrix elements are simultaneously deter-

mined in p-Adic digit parallel fashion with a quadratic rate of

convergence.

0 '



b. Solution of a system of linear equations by linear convergence

We now briefly consider the problem of determining the solu-

tion to a system of linear equations iteratively.

Let Ax=b be a system of linear equations such that det A mod

p 0, p being a prime. Let A=A 1 mod p and b,=b mod p. We first

solve A1 x M=blmod p by Gaussian elimination (say) and there-

after use the iterative scheme

x ( k + l ) = (p A11 M x ( k ) + A 1 b) mod p k+(k=l,2,...)

where A=AI-p M and M is the error matrix. We can easily show by

induction that

(Ax(k) - b) mod pk = 0.

Then, our algorithm is formally:

Step 1 Solve A1 x(1)=b mod p.

Step 2 Use x(k+l)=(p A-1 M x ( k ) + A,' b) mod pk+l to obtain

the next iterate.

Step 3 If EUCLID(xk ) = EUCLID(x k + ) stop; else go to 2.

Remark

Note that this scheme for the solution of linear equations

has only a linear order convergence. However, it has the ad-

vantage of using only matrix-vector multiplications unlike the

Newton iterative scheme where matrix-matrix multiplications are

involved.



7. Concluding remarks

(i) The scheme.Qf formula (3) gives rise to quadratic

convergence. It is possible to use schemes having

higher-order convergence. The following scheme,

for example,
3n

B3n = B 3n- (I + (I - B3n-1) (21 - AB3n-1)) mod p (10)

has cubic convergence.

(ii) We have assumed throughout that det A mod p ?' 0, but in

actual computation we cannot assume this a priori. We

can keep choosing one prime after another until we suc-

ceed; but this is very expensive computationally. It

would be better to use the method of rank 1 update, which

is as follows:

We apply our algorithm to A+V instead of A where

a ll

V a :2  [bl,b 2 .... b = abt is arbitrarily (11)

L.n] chosen.

Finally, we use the formula

-1 -i
A-1 = (A+V)-1 + (A+V) V(A+V) (12)

l-bt (A+V)-1 a

to retrieve the actual inverse. This method always suc-

ceeds except when A- =0 over Z and A mod p=0.

(iii) It is possible to extend the scope of our algorithm for the

determination of the g-inverse of a singular matrix.

(iv) The algorithm determines all the elements of the inverse

matrix simultaneosly in p-adic digit parallel fashion with

a quadratic or higher-order convergence rate [131.



(v) In solving a system of linear equations, we note that

we have split the matrix A in a very special way, name-

ly, A=A1 - p M. We could try splitting it as in the

Jacobi, Gauss-Seidel or SOR method (31; but unfortun-

ately, the convergence in our sense is not realizable in

these cases.

(vi) We can invert polynomial matrices whose elements are in

z [2] by constructing the inverses of the matrices Ztx]

mod pi for several primes pi and then using the Chinese

Remainder Theorem to construct the actual inverse [i].

OCOEE



(u i ,  u'! (a ,- bi qi (till t!)
11 11 1

0 (rr, 0) (w, 1) [u o/W] (u0 - aoq0 , uo, - boq O )

1 (w, 1) (to , to) [ul/al] (U 1 - -blq l )

2 0 t, t) [u2/a2] (u2 -a 2q2, u2 -b lq2 )

k (uk, u) w [uk/ak (0, (-1) k+l pr

Table 1

Euclidean Algorithm

7-



u ') '!(a bi) qi (t i t t!)
1 1 1 1 1

0 (625, 0) (448, 1) 1 (177, -1)

1 (448, 1) (177, -1) 2 (94, 3)

2 (177, -1 (94, 3) 1 (83, -4)

3 (94, 3) (83, -4) 1 (11, 7)

4 (83, -4) (11, 7) 7 (6, -53)

5 (11, 7) (6, -53) 1 (5, 60)

6 (6, -53) (5, 60) 1 (1, -113)

7 (5, 60) (1, -113) 5 (0, 625)

Table 2

Example of Euclidean algorithm

PO
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